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ABSTRACT

A generalized critical point is
characterized by totally non—linear
dynamics. ~~~~~~~~~~~~~ the determin—
istic and stochastic theory of relaxation Is
at such a point. Canonical problems are
used to motivate the general solutions .
In the deterministic theory , we ahow— tha-t-,.----
at the critical point certain modes have
polynomial (rather than exponential)
growth or decay. The stochastic relaxa-
tion rates can be calculated in terms of
various incomplete special functions.
Three examples are considered . First ,
a substrate inhibited reaction (marginal
type dynamical system). Second , the
relaxation of a i~~a~~~ ie1d ferromagnet.

~~. resu1~t. that generalizes the
• work of Griffiths et al. Third , we co-n—-a.-

~~~— ~id-er the relaxation of a critical
harmonic oscillatory
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SECTION 1

INTRODUCTION : “CRITICAL SLOWING DOWN ”

Thermodynamic and kinetic generali zed cri tical points are

characterized by totally non—linear dynamics. Such non-linear

dynamics lead to many interesting phenomena, e.g., “anomalous ”

fluctuations (treated in (1)) and the “slowing” down of the decay

of a perturbation. To illustrate the latter effect, consider

the kinetic equation:

x = b(x, a) xCR1 cCR~~ (1.1)

for which the origin is assumed to be a steady state: b(O, a) = 0.

Suppose that the system is perturbed to a value x = x0. A well

defined problem is to calculate the time that the system takes to

reach 6(0 < 6<< x0) from x0. If x0 is “small ,” then a

natural approach involves approximating (1.1) by

= b’(O, a)x + 0(x
2) x(0) = x0. (1.2)

Now we assume that b’ (0, a) < 0 , so thatthe perturbation decays.

• The time that the system takes to reach x = 6 is easily calculated

to be

= b’ (0, a) 
. 

(1.3)
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However , suppose that for some critical value of a =

( b’ (0, a
~
) 0. Then (0, a

~
) is a “generalized critical” point:

the dynamics at a = a
~ 

are totally non—linear . Equation (1.3)

- yields the physically ridiculous result t6 
= . Furthermore ,

(1.2) becomes x = 0. Both of these difficulties are due to im—

• proper linearization procedures, and not any physical divergences.

• In fact, the decay of the perturbation is algebraic in time , with

the exact form determined by the nature of the singularity at (0, ac).

Such simple problems and the canonical bifurcations are considered

in section 2. The points essential to the understanding of critical

relaxation phenomena can be gained by study of one-dimensional

systems.

• If fluctuations are not included, a steady state can not be

attained in finite time. Since the deterministic forces vanish as
.

a steady state or equilibrium is approached , the ratio of fluctuation

: intensity to deterministic dynamics grows. Thus, the proper theory

of relaxation must be a stochastic one. The deterministic kinetic

equation is modified by a Langevin approach. We use the diffusion

approximation to treat the stochastic kinetic equation. In particu-

lar, we derive a diffusion equation for T(x’~~x), the expected time

to reach x ’, starting at x and conditioned on the fact that the

process reaches x ’. We analyze the one—dimensional equations fully

and obtain certain special functions , which are genearlized in

section 4 to the solution of multi-dimensional problems. In sections

2
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5-7 , we consider three applications of the theory In section 5,

relaxation from a steady state of marginal stability in a substrate

inhibited reaction is considered. In section 6, we consider relaxa—

tion of a mean field ferromagnet. Our results complement and extend

the results of Griffiths et al (2). Finally, in section 7, we

discuss relaxation phenomena in the critical harmonic oscillator

(1, 3)

I
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SECTION 2

DETERMINISTIC THEORY OF RELAXATION AT CRITICAL POINTS

In this section , we give the deterministic theory of relaxa—

tion. Our classification scheme extends the ideas of Kubo et al (4)

to multi-dimensional systems (section 2.2). In section 2.1, we

stress the one-dimensional results, because the multi-dimensional

theory is a natural extension of the one—dimensional results.

2.1 ONE-DIMENSIONAL SYSTEMS

We consider a kinetic equation

1 nx = b(x, a
~
) x(0) = x0 XER aER . (2.1)

The origin is assumed to be a steady state of (2.1).

A. Normal Type

The steady state is of the normal type if b’ (0, a) ~ 0. It

is stable if b’(O , a) < 0 and unstable if b’(O , a) > 0. In the

vicinity of the origin , (2.1) can be replaced by

U

x = b’(O , ci) x x(0) = x0 (2.2)

As mentioned in the introduction , the time that the system takes

to reach x = 6 , starting at x = is

1 r xolt0 = Q~n I  . ( 2 . 3 )
lb  (0, ct)~ 

L

4

Is __J4_. ~~~~~~~~~~~~~~~~~~~~~~~~ - . - - - .,-•.-, _____________________ 

- — - - —.- -- - -—- —-~~~~



— ~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

iii 

_ _ _ _ _ _
B. Marqjnal Type

The steady state is of the marginal type if aER
1 and for

a value a = ci
c we have

b(0, cic) = b’(O , a
~
) = 0 , b(0 , a

~
) ~ 0 (2.4)

There exists a local change of coordinates (e.g., (5),(6), or

Appendix A here) so that for a near ctc , x near the origin

equation (2.1) becomes

y = y 2 
— 8 ( a )  , y (O) = y 0 (x 0 ) ( 2 . 5 )

In ( 2 . 5 ) ,  8 ( a )  is a regular function of a and 8( a c ) = 0. We
‘~ ~ call ci = the marginal bifurcation point. The flow of (2.5) is

sketched in figure 1. The bifurcation picture is shown in rigure

• 2. The marginal case was considered briefly by Kubo et al (4)

and Nitzan et al (7).

Now suppose that 8 > 0 and -/~~ < ~~ < /~~~. One can

calculate the time that it takes to reach y1 =-/6 + 5. We obtain

1 ‘~
‘I~~~~~~ 

iy 0 — 1 W ~t = — ~~~~~~~~~~~~~ ~. ( 2 . 6 )
2/~ ~y1 ÷ / ~~)

For small we have

_ _ _ _ _  

1 1W,’y1 2
_______  = —_______ = (1 — /~ /y 1) + 0 ( 6 )  ( 2 . 7 )

5
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FIG. 1: DYNAMICS OF THE CANONICAL SYSTEMS
(a) MARGINAL TYPE

- (b) CRITICAL TYPE
(c) HOPF TYPE
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FIG. 2: BIFURCATION PICTURES IN PARAMETER SPACE
- (a) MARGINAL TYPE;

(b) CRITICAL TYPE ;
(c) HOPF TYPE
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Expanding the logarithms in (2.6) gives

1 1
t — — — + 0(8) (2.8)yl Yo Yl

so that t remains finite as 8—.0. Clearly, this  resul t  wouldyl
not be obtained had we used the linearized version of (2.5) :

y = — 2 v’T (y + /~ ) (2.9)

In  another possible situation ~~O.Suppose that v 0 < 0.

The time to reach 6 < 0 from y0 (y 0 < 6) is (exactly)

t = — .
~~ + (2.10)6 Y 0 U

The point of irrportance is that (2.8, 2.9) yield algebraic forms

for the relaxation time , whereas (2.3) yields a logarithmic time

(i.e., alciebraic versus exponential relaxation).

C. Critical Type

2A steady state is of the critical type if ct ER and for

b(0, ~~) = b ( 0 , a
c

) = b ( 0 , a )  = 0

(2 .11)
b (0, cz

~
) ~ 0

8
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The canonical form of the dynamics, for a near and y
‘ ‘ I- near 0 is ( for  b < 0)

3 1 2y = —y + 8 ( a ) y  + 8 (
~~

)
¶ - (2.12)

y(O) = y0(x0)

In (2.12), 8(a) is a regular function of a and 8(a
~
) = 0.

We call a = the critical bifurcation point. The flow of (2.12) is

sketched in figure 1. The bifurcation picture is shown in figure

2. When cx = we have

3y = —y (2.13)

so that the origin is very weakly attracting. The time that the

system takes to reach y = tS from y = y1 > 6 is

= - 4—1 -~-~ 
— ~~~~~~ (2.14)

[y 1 6

As in the marginal case , we obtain an algebraic , rather than

exponential , decay rate.

D. Hopf Type

A steady state is of the Hopf type if aER 1 and when a =

b(0, a ) = b (0, a ) = b (0, ac) = 0c C ( 2 . 1 5 )
b (0, a

~
) ~ 

09
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The canonical dynamics (8) in this case (for b’’’ < 0) are

y = -y(y2 - 8 ( a ) )  (2 . 1 6 )

— where 8 = 8( a )  is a regular function of a and 8(ci
~~

) 0. The
- 

flow of (2.16) is sketched in figure 1. The bifurcation picture is

sketched in figure 2. It is important to note the difference be-

tween Hopf and critical cases (i.e. the number of parameters) .

MULTI-DIMENSIONAL THEORY: CANONICAL FORMS

We now consider

x = b(x, a) XCRn aCR 1 or R2 (2.17)

with the origin a steady state. We let A 1, ..., A~ denote the

eigenvalues of the matrix B = (b1, .) . For simplicity , we assume
~~~~ 0

assume that there are n distinct eigenvalues and elgenvec-tors.

Let k+, k , k0 denote the number of eigenvalues with real part

positive, negative, and zero, respectively. The dynamical systems

are classified as follows .

A. Normal Case

- Hence k0 = 0 . It is well known that (2.17) can be replaced

by a change of variables x-’~y so that

= A~~
1 

+ 0(y2) y’(O) = y1(x0) (2.18)

If k+ = 0, then the origin is stable. If k+ > 0, then R~ c-in

10
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• be divided into two sub-spaces: an expanding part (We)~ 
and a

contracting part (W
c-
) (figure 3), with dim We + dim W

c 
= n.

B. M~ rg ina1 Case

We now let aER1 vary. Then the eigenvalues of B are

• functions of a: = A k (a). When a = ci we assume that,

1) All eigenvalues are real. Exactly one eigenvalue

A 0(~~ ) = 0. There are k negative eigenvalues, X~~, . . . ,  A~ and

n — 1 — k positive eigenvalu~ s A k+1~ 
... , A n_ i.

2) There are enough eigenvectors. Let Z denote the

eigenvector corresponding to A 0. Then from (2.17), we obtain ,

Z = b ( y ( Z ) ,  cx )  ( 2 . 1 9 )

The marginal type steady state is characterized by

b ( 0 , cxc
) = bz (O , c x )  = 0

— ( 2 . 2 0 )
b zz ( O ,

~~~
) ~ 0

In appendix A , we show that (2.17) can be put into the form

= A~ y’ + 0 (y 2 )

(2.21)
0 2  0 1y =(y ) ± 8(a) Y E R

+ 0(y3)

11 
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FIG. 3: MULTI-DIMENSIONAL PHASE SPACES.

(a) NORMAL TYPE
(b) MARGINAL TYPE: DOUBLE ARROWS INDICATE EXPONENTIAL

GROWTH/DECAY ; SINGLE ARROWS INDICATE POLYNOMIAL GROWTH/DECAY
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- Our result is approximate , whereas Arnold (5) and Shoshaitshvili (6)

show there exist transformations which eliminate the higher terms.

The construction in appendix A is useful , however , in that it gives

explicit ways of calculating the y and 8(a) . When cx cxc-

= 0. The phase space R” is now decomposed into a direct

product

R~~~~~w + W  + W  ( 2 . 2 2 )0 e

where W0 is the manifold corresponding to A
0 and We Wc-

are the expanding and contracting sub-spaces respectively.

The assumption that all eigenvalues of B were real affected the

form of the canonical equations. Complex eigenvalues are explicitly

treated in the Hopf case.

C. Critical Type

In this case, aER
2. The eigenvalues of B are still

denoted b~’ A( cx ). We assume :

1) When a = cx
c- 

there is one zero eigenvalue, A 0,

k negative eingenvalues and n - k - 1 positive eigenvalues.

• All eigenvalues are real.

2) There are enough eigenvectors. Let Z be the

eigenvector belong ing to A 0(a) . Then from (2.17), we obtain

Z = b(y(Z), a) 
- ( 2 . 2 3 )

13
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The critical type steady state is characterized by

b(0. .~c-
) = bz

(Q i c x )  = bzz (O . a )  = 0

— ( 2 . 2 4 )
bzzz (O r c x )  ~ 0

In appendix A , we show that  the canonical dynamics are

i 2
= + 0(y

( 2 . 2 5 )

Z = ± ( Z 3 ) — 81
(a ) Z  — 82 ( c x )  + 0 ( z 4 )

In (2.25), 8 ( a )  is a regular function tha t vanishes when a =

The ± sign in (2.25) correspond s to the sign of bzz~~(O, cx
c-
).

Arnold and Shoshaitshvili state a theorem in which the higher order

terms are eliminated . As remarked above , the constructions in

appendix A are useful  for  applications. The decomposition of the

phase space R~ is sketched in figure 4.

D. Hopf Type

In the Hopf case , cxER
1 
and some of the e.igenvalues are co~np1ex.

When cx = ci one eigenvalue , X 0 (cx) is a pure imaginary with

ReA 0(a) 
j~~c- 

~ 0 (2.26)

Ic 
___________________  _________ 
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FIG. 4:  DE COMPOSITION OF PHASE SPACE IN THE CRITICAL CASE.
- DOUBLE ARROWS INDICATE EXPONENTIAL GROWTH/DECAY . SINGLE
- ARROWS INDICATE POLYNOMIAL GROWTH/DECAY.

25

~~~~~~~~~~~~~~~~~~ _~~~~~_ ~~~_ —-



~~~- - -,- a -  — .~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -- — - - -~~~~~~

P

Th us , as a crosses cx c- , a pair of eigenvalues c-losses from the

left half plane into the right half plane.

Let x = reiG . Fenichel (1975) (also see Arnold (1972)) has -

shown that the canonical dynamics are
~~

-

r = ±(b1r
3 

— nY1r) (2.27)

0 = A 2 + b2r
2 

+ ~~1r (2.28)

where is

y 1 —~~~~~Re A (ci )  
ac

A 2 > 0 and b1,b2 ~ 0. The function r~ = ~ (a )  is regular and

~(0) = 0.

16
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E. Relaxation Rates

(~iven an initial displacement from the origin

y(0) = [y0, . .. ,  y~~~) (2.25)

it is clear that the appropriate relaxation (or growth) rate of

the k th component (or mode) can be explicitly calculated by using

the canonical forms. The calculations reveal exponential growth

in We~ 
decay in W

c- 
, and polynomial growth or decay in W0 

(at

bifurcation points). Thus, we have a complete , albeit local ,

deterministic theory for relaxation phenomena in the vicinity of

critical points.

- 17
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SECTION 3

STOCHASTIC THEORY OF RELAXATION :

FORMULATION AND ONE-DIMENSIONAL RESULTS

-

The deterministic theory of section 2 is approximate in

that it ignores fluctuations . Since the deterministic dynamics

vanish (to perhaps second order ) at a steady state , the proper

theory of relaxation phenomena is a stochastic one. Our theory is

still phenomenological , but it may be possible to connect it to

underlying statistical physics.

3.1 STOCHASTIC KINETIC EQUATION AND DIFFUSION APPROXIMATION

We replace the deterministic kinetic equation (2.17) by

the Langevin equation :

= b’( x )  + ~-~~ c-~~(x)  y~~(t/i) (3.1)

In (3.1), t is a small parameter relating the time scales of the

fluctuations and the deterministic dynamics , c is a small parameter

characterizing the intensity of the fluctuations. The process

~~ is a zero mean , mixing process (for more exact assumptions ,

~~~ (9)). The field a~~(x) is assumed to be known , or qiven by

some prescription .

The process y(S) in (3.1) has correlations. Hence , our

model is more reasonable than “white noise” models. We let

18
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- 1

kl f  E[~~~( S)~~~(O)] ds (3.2)

As r-’-O , X
i
-)X , a diffusion process. If u

0
(x) is a bounded ,

measurable function and

u(x , t) = E[u0(~~(t)) f~~(0) = ( 3 . 3 )

then u(x, t) satisfies the backward equation

U
t 

= 

~~2 
+ (b’ + cc’)u. . (3.4)

In ( 3 . 4 ) , subscripts indicate partial differential and repeated

indices are summed from 1 to n. The coefficients a13 , c
1 are

~~~ = c~~(x)c~~(x) [
~kl + 1k] (3 5)

c~ = ~~~~~~~ ~~~ a~~(x) (3.6) ~~~~

In practice a (x) and c(x) cannot be calculated from first prin-

cip les, but some prescription must be given for their calculation

(e.g., (10)).

Let N be a neighborhood of a stable steady state or, more

qenerally, a domain in Rn . We set

u(x , t) = 1 xCN

u(x, t) -‘
~ 0 as distance from x to N -- (3.7)

x~~N
u(x , 0) =

x C N

19 
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I

Then, u(x , t) is the probability that x(t) has entered N by

time t , given that x(0) = x.

For stochastic relaxation theory, we are interested in the

expected time to enter N , given x(0) = x and tha .~ the process

enters N:

T(x) f  tu~~(x, t) dt. (3.8)

Then T(x) satisfies

T.. + (bi + ~c1) T .  -~~( x)  ( 3 . 9 )

where

~~(x )  = 
Urn u ( x , t) (3.10)

Namely,  ti (x) is the probability that the process eventually

enters N, given that x ( 0 )  = x. The boundary conditions appro-

priate to (3.9) are

T(x) = 0 xEN
(3.11)

and a growth condition as distance (x, N)-~~

3.2 EXACT SOLUTION AND CANONICAL FORMS

When xE R1 , equation (3.9) is an ordinary differential
equation

20 
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q 
Txx + (b(x) + 

~
( c ) ) T

~ 
= —~i ( x )  ( 3 . 1 2 )

A
Let N = j x }  . Then the solution of (3.12) is

T ( x ) = ~~~~~~ 2f  
b+c c  

d~
] 

f  i i (x )  ex~~[-~.f 
b+cc dY]dx ds

(3. 13)

Equation (3.13) has a rather conplicated asymptotic analysis.

Instead of doing an asymptotic analysis on (3.13), we return to

(3.12) and set, for convenience a~ 2, u(x)~ 1, and c=0. We will

analyze (3.12) and obtain certain special functions . These functions

will be generalized in section 4, for the solution of multi-dimen-

sional problems . Our analysis is based on matched asymptotic

expansions (e.g., (11)).

Away from the zeros of b(x), (3.12) becomes

b(x)T
~ 

= —l ( 3 . 1 4 )

This is the “outer” equation.

Near zeros of b(x) , (3.14) breaks down . We need to

stretch coordinates (3.12) to obtain the appropriate “inner ’

equations. We shall analyze (3.12) by using the canonical

form of b(x).

21
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A. Normal Case

In the normal case , b ( x )  = ±x , with (+) i n d i c a t i n g  tha t

the orig in is an uns table steady sta te , ( — )  i nd ica t ing  a stable

steady state. Introducing z = x//c , ( 3 . 1 2 )  becomes

Tzz ± ZT = —1 (3.15)

B. Marginal Case

— In the marg ina l  case , the canonical  dynamics  are b ( x )  = ± (x 2)— ~~~.

We in t roduce the stretched var iables

z = ~~~~~~~~~~ , cx = cx/~~~~~ , so tha t ( 3 .12) becomes

T
~~ 

± (z 2 - dT = —1/c~~~
3 

(3.16)

C. Critic~~1 Case

In the c r i t i ca l  case , the canonica l  dynamics  a r e  b ( x )  =

x
3 

+ ~~ x+~~2 . We introduce stretched variables • z =

= 
~2 

= 8 2 /c and ob t a in  the inner  equat ic .~

T
~~ 

+ (±z 3 
+ ~1z + 82

) T
2 

= l/c ½ 

- 

(3.17)

-: D .  Hopf Case

In the Hopf case , the canonical dynamics are b(x) = - --a + 8x

We introduce the stretched variables z = x/~~ , 8 = 8/E ½ and

obtain the inner equation

T zz + ( -z 3 
+ 8 z ) T  = - l/ ~~~

2 ( 3 . 1 8 )

ft 2 2
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Equations (3.15-3.18) define certain incomplete special

functions. These special functions will be used in the next

section to construct asymptotic solutions of multi-dimensional

problems .

23
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S E u J I u N  4

S T Q C J i A S 1 ~~C T i~~~Le:: AS ,YM P T0T I C RE SU L TS

When XL R
n 

n�2 , -~~w~t i c~n ( 3 .  s )  ‘~il1 usua1i~’ not. h~~ c c~::~ct

so1~~L i o n s .C on s e q u en t ly ,  approxima t t e chn i qu~~ ire  r e q u i r ed .  The

methods used here are -l~~se1y related to those in (10). The ~-~ sic

ide~ is to generali ze thu or~e--L1i::lcI1sio nal inner solutions; wc call

the method a gener~~lize i r~~ me t nod . Al though the norm al case does

not represent a “critical’ point , we inclu de it for  completenes s .

4 . 1  NORMA L CA SE

We suppose tha t the or ig in is a s imple steady state ( f i gure 5 )

and that it is stable . W~ seek a solution of (3.9) in the form

T ( x ) = g(x)F(~~~~) ~ h (x)~~
2 F ’ 

(~ /~~~
) ÷ k ( x )  - ( 4 . 1 )

In equation (41.), F ( z )  is a special  f u n c t i o n  s a t i s f y i n g

d
2

F iF
= z — — 1 (4.2)

dz~ 
dz

and the func tions ~(x) , g(x) , h ( x ) , and k(x) are to be determined .

In order to completely ana lyze  the problem , WL . asnunt that g, h , k

have expansi ons

g(x) = E gn (x )~~~ h ( x )  ~ h~~(x )~~~ k(x) E kn (X)~~ (4.3) ~
. -

Consequently , the construction given here represents the first term

in the asymp totic solution of (3.9).

When derivatives are evaluated , (4.2) is used to replace

F” (
~/.f~

’) by 4i/.J’~ F’ (~ / .je) - 1. Then terms are collected according

to powers of c. We obtain:
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— ~~-4-—— ~~~~~~ - . ‘ — -~~ -~~- - -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -
~~~

-—— ‘—~ 1

_ _ _ _ _ _ _ _ _ _  — 4- - —-— --



- -

—~i ( x )  c~~ [b’~) .  + a~~~ ~) .~ r . 4 t )  (g+h4s)F’
2

0 i
+ € F(b g~ )

+ c°(b’k. ~ ~~~

+ ::~~~~

1
hi 

~a 

g4 r~ + ai3hill,j* 
(4.4)

- 

+ —r— ~~~~~~~~~~ —y— ~~~~~ — gc
’4,.

+ hc~~~~!]

The leading terms vanish if

i a13b + = 0

b’g~ = 0 (4.6)

i a~~ -

b k1 + —
~~
-— $~~~~~4l~~~~~~~ 

-= — u ( x )  ( 4 . 7 )

First consider (4.5). Since b1(o) = 0 for all i, we set 4(0) = 0,

in order to keep 4(x) regular. Then (4.5) can be solved by the

method of characteristics. We note that the transformation

= converts (4.5) to

ib + 
~ 

= 0 , (4.8)

which is a Hamilton-Jacobi equation (see also (12)). Then , we can

solve the Hamilton-Jacobi equation in terms of characteristics:

= = = 
~~

- 
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FIG. 5 : STOCHASTI C RELAXATION PROBLEMS IN THE NORMA L CASE.
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where

i ii
I1 (x , p) = b + 

~~
— P1~~ 

(4.10)

S t a r t i n g  at the ori g in , the phase plane is covered wi th  t r a j ec to r i e s,

called rays , along wh ich i~ (or ~) is known . Thus , ~ at any point

x is known.

Equation (4.3) indicates that g is constan t on determin is tic

trajectories. Since all trajectories intersect at the orig in , g

must have the same value on all trajectories. At the origin , (4.7)

becomes

ii
= —u (0) = — l (4.11)

Thus

—l
= 

~~~
-
~~

-
~~

- 

~~~~~~~~~~~ 

. (4.12)

We set k ( 0 )  = 0 as initial data for (4.7).

If we set F(0) = F’ (0) = 0 as initial conditions in (4.2) ,

then the leading term of the asymptotic solution satifies T(0) E 0.

1/2 - -The 0(c F’) term in (4.4) vanishes if

. ii . . ii
b
1
h
~ 

+ 
~~
-y- gi~~~ + a1J h~ lP~ P + ~~

-_h
~p . . p

+ 
~~~~~~~~~ 

~~~~~ - gc~~~ + ~~~~~~ = 0 (4.13)
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At the origin b’ (O ) ~ (0) = 0, so t h a t  ( 4 . 1 3)  he.~or-o~s

h ( 0 ) 

~~

- - ~~~~ + c~~~~~
} 

(4.14)

i-~~uat ion  ( 4 . 1 3)  can be solved by the method of character is t ics, wi th

i n i t i a l  da ta g iven by (4.14).

Thus , we have complete ly constructed the lead ing  te rm of the

asymptotic solution of (3.9).

As a by-product of our method , we are able to approximate ly solve

the famous Kolmogorov first exit problem , recently consi l e r e l by

Matkowoky and Schuss (13) using matched asymptotic expansions. This

problem is the fol lowing : suppose that  the o r ig in  is so: rounded by a

domain D , with  boundary  ~D. Find the expected time that the

process takes to hit the boundary (i.e. the mean exit t ime  f rom D)

(Fig. Sb) from x.
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We follow the arguments  leading to equat ions  ( 4 . 1  - 4 . 1 1 ) ,

except that the initial data for F , F ’ and k ( x )  chanqe .  We set

k(x) 0 on jD. We distinguish two cases:

i) The boundary aD is a con tour of ~ (or 
~) s a y ,  4 =4 D on

—

ÔD. Then we set

= F’  
~~~~~~~ 

= 0 (4.15)

when solving (4.2) - Tiici~ T 0 on D.

ii) The boundary uD is not a contour of -
~ . Let and

denote the maximum and minimum values of 4 on ÔD. Then T 4~ 
0 on —

uD , but it can he shown that  on iD

l T I ~~~~~ L~~~
- n (

~~~~1/4 11 ) I  k ’ - . 16)

+ exponentially small terms .

Hence , if I2~(4 1M11 )I is small , then IT(x) I will be small on the

bounda ry .

4.2 MARGINAL CASE

In some senses , the marg ina l  case has the least i n t e re s t ing

dynamics.  The dyn amical problem we consider here is sketched on

f i gure 6. When the determinis t ic  system has two nodes (Q0, Q1)

and one saddl e ( S) , even i f the process starts near Q
0
, it wi l l

eventually reach -
~~~

, due to the proximity of and S . The

- proper question in the stochastic theory involves the time to cross

some given curve R. We note that such a time is infinite in the

deterministic case , if the phase point starts on or above S.
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~~ seek ~~ solution of (3.9) of the form

T(x) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4.17)

+ h ( x ) ~~2 h 3 B t (~~/e
2/3

1 l/c~~~
3 1y 2 ) + ~(x)

In  ( 4 . 1 7 ) ,  B ( z ,  hx 1 1X 2 ) sa t i s f i e s

= — (Z2 — a) — + X2
Z (4.18)

and g ( x ) , h(x), k(x) , 4(x) and the parameters cx ,y
2 are to be deter-

mined . We proceed as in Section 4.1. Instead of equations (4.5—7)

-.~e ob t a in

b
1
4. - 4~~4~ (4~ 

- 
~~ ) = 0 (4.19)

b
1
g. = 0 (4.20)

- ii
b1k. — 

~~
-
~~

—- 
~‘ .~~~g ( l  + 

~~~ 
= —u(x) (4.21)

In (4 . l 7 ~~, we have set ~ =

We set ~,2 = 

~o 
at and at S.In particular ~‘ ( Q ~~) = +

and ~(S ) = ~~~~~~~~~~~~~ The value of can be determined by an itera-

tive procedure (10). We pick an initial value of 8o = ~~0) and

~~ve (4.19) by the method of characteristics , starting at Q0, where

•;~~~
0)
~ Some rays w ill approach S . As a ray approaches S ,

~ 
should approach _~j~~ 0) . If it does not , then the 8~~

0)  must be —

replaced by a second iterate ~~ i )  
The method of false position
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FIG. 6: RELAXATION PROBLEMS IN THE MARGINAL CASE
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- 
can be used to ca lcula te  i t e ra t e s  of 

~~~~~ 

This proceTh~1& c~~n be re—

peated unti l is known to any desired accux acy . (~~ri (10) , we

present a discussion of this ca l cu l a t i on  in more d e t a i l .)

Equation (4.20) indicates that g is a constant. At Q0 and

which we denote generical ly by p , we have , f rom ( 4 . 2 1 ) :

13
—~~~-~~

-_ ~~~~~~~ g(l + 12 ~.‘(P)) = —~i(P) (4.23)
i J  p

These are two equations for the unknowns g and 
~2- We set k = 0

on R and assume that R is a level curve of ~ , with  
~ 

on R.

Then we set

B(
~ R

/c 3,8,1/
~~~

3,y2) = B1(
~~R/ E

~~~
3 ,8 ,l/c

~~~
3 ,y 2

) = 0 ( 4 . 2 1 )

-: With these choices, T(x) 0 if x R.

At the b i f u r c a t i o n  point n = 0 (th e marg in al b i f u r c a t i o n)

Q0 and Q1 coalesce . Then 0 , and it can be shown that

12 0 (10). At the saddle-node QQ/Q1, equation (4.23) still pro-

vides one equation for g:

g = ~~~(~~~)  (4.24)

-

Elsewhere , we have given proofs that all the construction are regu-

lar at the bifurca tion point ((10), appendices D, E).

In section 5, we consider an example of a chemical system ex-

hibiting the marginal bifurcation .

-

~~~~~~~~~~~~~~~~~~ 

- 
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FIG. 7: RELAXATION PROBLEMS IN THE CRITICAL CASE .
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L ~ 4.3 CRITICAL CASE

We now cons ider a system wi th  three steady states , P 0 .  P 11 and

P 2 when > 0. When a
1 

= a 2 = 0 the three steady sta tes

coalesce into a c r i t i ca l  type steady state. When a1, a2 < 0 there is

onl y one real steady state; it is assumed to be stable. If

> 0 , we surround P 2 by a domain N and pose the following

stochastic relaxation problem : what is the expected time to enter N ,

given the in i t i a l  position. Clearly there is an analogous problem

for  a neighborhood N of P0. When there is only one steady state

P, we surround P by N. We note that if N shrinks to P

then we have the expected time to “reach” P , conditioned on in i t ia l

position. We also note that T(x) 0 if xCN .
‘I

We seek a solution of (3..9) in the form

T(x) = g ( x ) Q (~ /r
1/4

,i~/
/2 ,B/c

3/4
I l/ /2

ly j/c~~~
4
,12)

+ h(x)c 3/4Q~(~ /c 1/4 ,a/ /2 ,B/e
3/4

l l/C~~~
2
ly l/c l/4 ,c 2) (4.25)

+

where Q(z,a,13,y 1,y 2,y3) satisfies

~

—

~

- = ± (z3 — az — B )  
— 

~~~~l 
+ ~~~~ + ~3~

2 (4.26)

The (+) sign in (4.26) corresponds to the steady state P being

stab le , the (-) sign to it being unstable. We consider the case in

which P is stable.

Instead of (4.5), we obtain

. ii 3
~~~ + 

~
-
~
-— ~~~~~~~~ (~~~ 

— — 
~) 

= 0. (4.27)

J-~~_T ~~~~~~~~ - :T:T T~ :ITTI II ::I:~~ ~~
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When there are thr ee steady states , a and ~ are determined by a

-procedure analogous to the one in section 4.2. Namely, at the steady

states we set

3
4’ — a~ 

— = 0. ( 4 . 2 8)

The method of characteris t ics  is then used to determine a and ~

by an iterative procedure . When the three steady states coalesce

a = = 0. When there is one real and two imaginary steady states ,

then a, ~ < 0 and can be determined by power series. Such series

are constructed elsewhere (10).

Instead of (4.7) , we obtain

2 —
b
1
k
~ 

+ —
~~

--— 4’~~v~~~( — l ~+Y 2 4’ +Y 3 4’ ) —u(x) (4.29)

At the steady states , we obtain

ii 2 —
~~

-
~~

-— ~~~~~~~~~~~~~~~ ) —u(x) (4.30)

When there are three real steady states , we obtain three equat ions

for g,  y2, and y~~. When two steady states coalesce , = 0. We

still have two equations for j and y2
. Final ly , when al l  three

coalesce , = = 0 and we are left with one equation for g.

We obtain an equation for h(x) that is analogous to (4.13)

and is treated in an analogous fashion. The initial values of Q

and Q’ in (4.26) are determined so that T(x) ~- 0 if xE~N.

j 
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4.4 HOPF CASE

The Hopf type dynamical  system is treated in an iden tical

fashion to the marg inal and critical type systems . We seek a solu-

tion of (3.9) in the form

T(x) =

+ l/4
H~~(~ /E

l/4
l l/e l/2 ,B/cl/2 ,y

2/ I/4)h(x) ( 4 . 3 1 )

+ k ( x )

where H ( z ,B,y 1,y 2
) s a t i s f ies

2
= ± ( z 3 

— ~3z ) !~-~ — 
~l 

+ ~~~ ( 4 . 3 2 )

The (+) sign corresponds to a stable limit cycle and unstable focus ,

the ( - )  sign corresponds to an unstable limit cycle and stable focus .

The analysis proceeds exactly as in section 4. 2 ,3.
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SECTION 5

SUBSTRATE I N H I B I T E D  RE ACTIONS :

A MARGIN AL TYPE STEAD Y STATE

The fo l lowing equat ions model a subs t ra te  inhibi ted  chemical

reaction in an open reactor (10,14):

- 1 1 2
= 

-l.4x 
- .069979 x’ + .25901-- -x X ( 5 . 1)

l .5+x~ +l3(x ) l+l0x x

- 1 22 x xx = .09— 1 2 (5.2)
l+ l0x  x

where x1 and x2 are dimensionless  “ concent ra t ion” var iab les .  The

steady state (.4359 , 2.065) is a saddle node , it is a marginal  type

steady state. The steady state (1.46 , . 5 2 )  is a stable node . The

phase portrait is shown in figure 8, along with a first exit boun-

dary . The theory on section 4.2 applies. We wish to calculate the

expected time to hi t R , cond itioned on in i t i a l  pos i t ion .  Usi ng the

bir th  and death approa ch to chemical k ine ti cs ( 1 5 ) ,  ca can be modeled

as (10)

/ i 
_________/ (~~~+ ~i 1 ) X  1 2

I 
£ L 1+iOx x

1 ( 5 . 3 )
I 1 2  -x x  2(~~~+~~,) x
\ l+l0x x

where

1 1 2
( X 1+ ii 1) x 1 l .4x  

1 2 + .06 9 9 7 9 x 1 
+ .25901 + ~ 

2 ~~~~~~~~~~~ 

-

l .5+ x + 13(x ) l+l0x x

1 2
( X 2 i.i2 )x 2 

= .09 + ~ 
2 (5.5)

l+l0x x 

~~~~~~—-4~ - - - - - - - .- -

- -- - - - -_ —- - -

~
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FIGURE 8: DETERMINISTIC PHASE PORTRAIT AT THE MARGINAL BIFURCATION .

- THE BOUNDARY R WAS USED IN THE CALCULATION OF THE MEAN

EXIT TIME.
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The parameter ~ character izes  the in tensi ty  of f l u c t u a t i o n .

In table I, we compare the theory of section 4 with Monte Carlo

experiments for ~ = .01.
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TABLE 1

Comparison of the  Theory and Monte Carlo E x p t ~r i r r ~~r a s

in the Marg inal Bifurcation

Test Point T(x) Theory  1(x) E xp e r i m e n t  (,1~ Tr i ~~1s)

(.42, 2.06) 60.3 56.4 (950)

(.38 , 2 .36) 104.1 91.2 (-.00)

( .2 0, 2.0) 66.1 62. 4 (2000)

(.3, 1.8) 37.7 35.0 (1550)

(.16 , 2.4) 119.6 103.5 (400)

( . 7 , 2.2) h-,.1 31.4 (1750)

(.6, 2.4) 74.9 6 8 . 2  (800)

I

I ,~~ 
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SECTION 6

K IN ETIC MODEL OF THE FE RRO MAGN ET

We shall give an analysis of the mean field ferromagnet,

similar to that of Griffiths et. al. (2). The problem is one

dimensioi al, so that the full theory of section 4 is not needed.

However , this application illustrates many of the ideas that run

through an analysis.

Consider N sp ins , with = ±1, in a magnetic field H.

Let J be a coupling constant. The Hamiltoman is

H = —
~~~ 

Eo.~
. — pH — 1/2.3 (6.1)

l-<n

We let

n (N + E c . )  , ( 6 . 2 )

denote the number of spins “pointing up.” Then (6.1) becomes

= 

~~~~~~ 
~~ - pH(2n — N) (6.3)

We take a mean field approach and assume that the number of spins

pointing up is really a statistical variable , ~~(t). The statistical

behavior of ~ (t) is described by transition probabilities :

Pr + S T ) — ~~( T )  = ll~~( t )  = n} (6.4)

= 
N n exp [

~ (~~
n + 1) - ~(n))] ‘St + O ( ’ S T )

36
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H Pr{n(T + ó-r)-n(t) = - l l n ( T )  = n} (6.5)

= exp [L~ ( 0 ( n  - 1) - 
~ (n))] ‘ST + ~~(‘S T)

where B = l/kBT. We assume that the probability of all other tran-

sitions is o (’ST). In deriving (6.4 ,5), we have restated the argu-

ment in (2). We follow (2) and introduce a “continuous ” variable

~~(t )  = 
~~~ 

= 
2~ - N (6.6)

If = ~ (r + tS -r ) — ~~(i), then (6.4,5) become

Pr = 2/N I~
(T) = = 1 ; x exp {_ ~~~_xJ — ~~

- -

+ o(~~-r ) ( 6 . 7 )

Pr ~~~ 
_ 2/N

I~
(T) = = ~ + x exp {-~~(xJ - + H~~) }  ‘ST

+ o (ST) (6.8)

We set a = JB, ~ = BpH and introduce a macroscop ic “physical”

time def ined  by

t (6.9)

Thus, we construct drift and diffusion coefficients

b (x) = ~~~~ E{~~~I~~(t) = x }  (6 .10 )

= (1 — x) exp [r~x + + - ( 1 + x)  exp [_ ax + — ‘S]

(6.11)
37
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~ 1
a (x )  = 

~~~O 
~~~ E {(‘S~ )

2
J~~(t) = (6 .12)

= ~~ {(l - x) exp (ax + + 6) + (1 + x) exp(-ax + - 6))

(6.13)

Thus, the average value of ~ (t )  evolves according to

x = b(x,ct,â) = 2ea1~~ {s inh(ax + 6)  - x cosh (ax + 6 ) )  , (6 .14)

subject to - 1<x<l. The steady states and true (physical) equilibrium

are solutions of b (x , a , 6) = 0. Therefore, one obtains

x = tanh (cx x + 6) (6.15)

Equation (6.15) is usually obtained by a statistical thermodynamics

argument (e.g.  ( 16) ,  pg. 101) .

This agreement adds support to our statistical approach . In

many respects, the approach used here is preferable to the standard

approach . Not only does the stochastic approach y ield the equili-

brium solution, it gives dynami cs and the steady states . As is well

known , equation (6.15) may have 1, 2 , or 3 solutions, depending upon

the values of a and ‘S. In figures 9a , b , we illustrate the

graphical solution of (6.15) for zero field ( iS  = 0). When 6 = 0,
x0 and x2 are both thermodynamically, and kinetically , stable .

However,.for 6 ~ 0, one of x0, x2 becomes kinetically stable
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(thermodynamically metastable) while the other is the true thermo-

dynamic (and kinetic) equilibrium (Fi gu re 9c) . The kinetic condi-

tion of criticality is that, when ‘S = 0

b ’ ( x1) = b” (x 1) = 0 (6.16)

We easily obtain a = 1 as the critical value of ci. This defines

the critical temperature.

Now consider ‘S ~ 0 , with x0 metastable and x 2 stable .

The expected time to reach x2, given that ~ (0) = x satisfies

_ 1 =
~~
T
~~~

+bT
~ 

(6.17)

T (x 2 ) = 0 T(x)<co (6.18)

wi th a (x )  and b ( x )  given by (6.13) and (6 . 11) .  Define the re-

laxati on rate from the metastable to stab le sta te by

— lk — T ( x 0 ) (6 . 19)

We can calculate the relaxation rate k for  all values of N.  The

method of G r i f f i t hs e t .al .  (2)  broke down for large N.  The result

• given here will  be valid for all values of N.  Our result thus

extends their analysis .  It can be shown that the two results are

equivalent for small N.
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SECTION 7

RELAXATION OF A CRITIC AL HARMONIC OSCILLATOR

— The application in section 6 did not use the theory of ~cc-

tion 4, but the one in this section does. We consider a Duffing

oscillator

dx
v (1.1)

mdv 3 — dii (7.2)
—

~~

-

~~~ 

(-k(r~) x  - a ( x  ) - yv i  -r .J~ a ~~~~~~

We assume that k(~ c) = 0 for some critical value of ~ and that

k(rj)�0 for all r~. The mean motion of the oscillator is given by

-kx-ax~~-y v

When a>0 , the origin is the only real steady state. The matrix

/0 l\

B = (b’
~~~)l 0 0 =( (7.5)

\m m

ha s eigenvalues and eigenvectors

+ 
= 

-y~~ y2—4k e~ = ( 1 
(7.6)

-y±Jy -4k
2m

when k 0 , the origin is a critical type steady state. Accord-

ing to the fluctuation dissipation theorem , for this problem

a 2kTy p , where

40

_ _ _  
- 

- - - 
- . - - -

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - —•

~~~~~~~~~
-- - - -



— -

— p =f E (~~(S)~~(0) )ds 

- 

( 7 . 7 )

Let T (x , v) be the expected time that the process takes to enter a

small ellipse around the origin , given that ~ (0) = x , ‘
~(0) = V .

Then , for a rb i t rary  k

-l kTyp 
~~~ 

+ - 
(kx +~~x~~~v) 

T~ ( 7 . 8 )

We introduce scaled variables by

V~~~ & fii~~~ V ’ T = ~~— T ’  t = ~~— t’

(7.9)

k ’ y0x 
~~ j — ~~

--- x ’ y y0~~(x ’)  k = ____

‘

~~~ 
y~

/ 2 \3/2
I Y0 \

a ’

Where E 0 is some re fe rence  energy , such that p kT<<E 0 . D e f i n i n g

= p kT/E 0 , we obtain (for k(-i1) 0)

• —l  = cflT’ v~vu + V ’T’ , — (a ’(x’)3 + fl ’v’)T’~~, (7.10)

In the sequel, we drop the primes. Since the origin is a cr i t ical

type steady state, the theory of section 4 applies.

The leading term in the asymptotic solution of (7.10) is

T(x) ~~~~~~~~~~~~~~~~~~~~~~~ l/~~
l/2,o ,o) (7.11)

+k ° (x )  + ~~~~~~
41
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Equations (4.27) and ( 4 . 2 9 )  become

vi1l ,~ (aX 3 
+ ~v)~ i + 0 ( 7 . 12 )

vk° - (ax 3 + ~v )k 0 
- g° ~ = -l (7.13)

In order to keep 4i regular at (0,0), we set ~ = 0 there . In

order to solve (7.12) by the method of character is t ics, we need in-

itial data for  and 
~~~~~

. If (7.1?) is differentiated with re—

spect to v and evaluated at (0 , 0 ) ,  we obtain

— fl1~I \/ = 0 at ( 0,0) ( 7 . 1 4 )

When (7.12) is differentiated three times with respect to x and

evaiuated at (0,0), we obtain

( 7 . 1 5 )

Thu s we obtain , at (0,0)

(a r~~~~~ ~~ (a
1/~~~~4/5) ( 7 . 1 6 )

Higher der ivat ives  are evaluated in a s imi l a r  f a s h i o n .  Thus , we

can specif y au ellipse around the origin:

N = (x ,v) : ~~x ,v) = ( 7 . 1 7 )

• We set Q(o/c~
’4,0,0 ,l/F 1/’2,0 ,0 ) Q ’ ( ~~/~~~

’4
1 0,0,l/E*’

2,0 ,0) 0

when integrating (4.26). We also set k(x ,V) 0 if (x,v)EN .

1~t the ori gin , ( 7 . 1 3 )  becomes

0 _ 2 — 2 3/5g — —
~~ — —

~
--,~~ 

r~ , (7.18)
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p

which determines the value of g°. Then , on deterministic trajec-

tories we have

0 0 2
= -l + g ( 7 . 1 9 )

Li 
2

with the initial data given above. Equation (7.12) can now be

solved by the method of characteristics , so that the leading term

in the asymptotic solution is known .
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Appendix : Classification of Two Dimensional Dynamical Systems .
The Normal Forms for Marginal and Cr itical Type De-
terministic Systems

In this appendix , we class ify  planar dynam ical systems into

normal , marg inal , or cr i t ical  types .  Our scheme is a gene ral i z a t i on

of the work of Kubo et.al. (4). We use Segre ’s method (17) to

derive the local normal forms for the marginal and critical cases .

I. Normal Type Dynamical Systems

Let the dynamical system

* = b(x) xER2 (A.l)

have a steady state at x = x 0 . Let X± denote the ei gen val ues of

(b~~.) evaluated at x0. The system (A.1) is of the normal type if

the real parts of X± are non-zero . The steady state is stable if

the real parts  of X± are negative.

According to the standard theory of differential equations (18)

there exists a change of variables x--y so that

/ ~‘l\ (X+ O\f
~~~~

1
\~ (a~~ + b y 1y 2 + cy~

~~ y 2J~ O X— ~~ y 2 )~~~~a2y~ + b 2y 1
y 2 + c2y~

+ 0 ( y 3)

The coefficients a1 
- c1 are given in terms of the second deriva-

tives of b(x) evaluated at x0.



-—

II. The Marg ina l  Type Systems

The dynamical system

* = b ( x ,-rj) xER 2 1ER (A.2)

is assumed to have the following behavior. (A.2) is assumed to havc-

three real steady states for ri>0. We denote these by Q
0

(~~~~ ), 
Q1(ri )

P 2
Denote by Bk the matrix 

(b~~ ) evaluated at Q0,Q, or P2. (k=0,l,2) -

We assume

1) For all ~ ,B 2 has two real negative eigenval ues

2) As r~-~0, the d istance between Q0(-fl) and Q1 (-~) decreases.

When rj  = 0 the two points coalesce and a n n i h i l a t e  each other

3) For rp.0,B
0 

has two real , negative eigenvalues which de-

pend upon ~ and B has one real positive and one real negative

eigenvalue. When ri = 0 , B0 = Bi has one zero and real negative

eigenvalue . The eigenvector corresponding to the negative eigen-

value has positive slope .

We introduce as new coordinates the eigenvectors y 1,y 2 as

• new coordinates so that (A.2) becomes

c-i= 0 ( y , f l )

2 (A..2a)
= 

~~~

The- system (A .2 )  is of the marg inal type if the above condi-

tions hold and

A- 2 

:±:~~ T ~~~~~~~~~~~~~~ ~~~~~~~~~~~~



I

a) (0,0) = 0 (A.3)

2 1b) (0 , 0 )  — a # 0.

When -q is small , but non-zero , we t ranslat e the or ig in , so

that the system (A.2) is approximately given by

= clii + (- 2 lly l 
+ ay~ + ~ y 1y 2 +

+ 0 (y3, 2) (A.4)

2
= X(r~)y2 + 0 ( y  , ti)

In (A.4), r ( r 1) is the non-zero eigenvalue of B(r~) (b~~ (n))~~X1.

The coef f ic ien t  a is g iven by A .3 b ;  the other c o e f f i c ie n t s  are

also given in terms of the derivatives of b(x). We assume c1+ 0

Let y’ = 
~
y. Then (A.4) becomes

2 2 3 2
= c1 + c

2ruy
1 

+ y 1 + by 1y 2 + cy 2 + O(y ,r
~

(A .  5)

= >‘0~
’2 +

where s =

In troduce new coordinates by

= ~~~~~~~~~~~~~~~~~~~~~~~~~~

2 3 2 (A.6)+ 0 ( r )  ,y ,ny

z 2 = 

~
‘2 + 0 ( ,y 2 )

A-3

__________ - 

~~_ : 

~~~~~~~~~~~~~~~ ---- - 4 - . - - - ,- -
~~~ ~~~~~~
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I:
then

= A~oz2 + O (T), L )

zi y
~ 

+ sy~ y 2 + sy
1
y~ + 2ty1Y~ (A.7)

+2uy
2y~ + wy~ 1~ + ry~~r)

+ 0(r)yy’ ,y 2
y ’)

Using (A .5)  i~ (A.7) yields

z~ = x0z2 + 0 ( ~~, Z 2 )

Zj  c1 + y 1(c 2 r1 + 2tc 1ii) + y~ (A . 8 )

+ y1y2 (b + sX 0) + y 2 ( r X  + sc 1-rI )

+ y~~(2uX + c) + 0 ( y 3
,ny

2
.

2
)

We choose
—c2 -b -Sc

t = 5 = — r =2c1

-c

and note that y
~ Z~ + 0 (y 3 ) .  Thus equation ( A . 8 )  becomes

= X
0
Z
2 + 0 (, Z2)

(A - 9)
Z~ = Z~ 

— ~ (r) ) + 0 ( Z 3 ,ilZ
2
,n

2 )

where ~~(i-~) = -c
1

i--1. Equation ( A . 9 )  is the local norma l form which

we desire. It is a weaker result than that of Arnol’d (5) or

Shoshaitshvili (6 )  who actual ly  el iminate the hi gher order terms .

A-4 
- I

_
i

I 
_ _  _ __________________ - . — -  •-.- -— ._ .- ,•~~~

,-~~~~~ ___.~~~_.._-_._. ~~,__ .__-.—- . —- -,- ----v - — - - - — -- ~~~~~~~~~~~~~~~~~~~~

~

-——,- ,

~

-- --

~

- -.— --~--— -- - - --— - -----4-- - -- -4- -- -



- - -- ~~~-—-4~ — --v—-4--—----—- - - — - -4- — ----— - ----- - - -4- - - -— —  

III. Critical Type Systems

- We now consider a dynamical system depending upon two para-

meters

* = b ( x , , ô )  xER 2 , Ô E R  ( A . l O )

We make the following assumptions :

1) For some combinations of -q and ô , equation (A.lO) has

th ree steady states P 0 ( , ó ) ,  P
1(y1 1 6 ) and P

2N~,o). When the

three points are distinct , we assume that P0 and P2 are stable

nodes and that P 1 is a saddle poi nt .

2) As ri,ó vary , two of the points may coalesce into a point

of neutral stability (i.e., one eigenvalue of the linearized equa-

tions is zero). This situation is equivalent to a marginal type

dynamical system.

3) As ,ô-.0 from above , the three steady states approach each

other and coalesce when r~ = = 0. Let B = (b~~ ) evaluated at

P
1
. When r i ,ô>0 , we assume that  B has one real posi t ive  and one

real negative eigenvalue.  When r
~ 

= 6 = 0 , B has one real nega-

tive and one zero eigenvalue . When r i ,ö<0 , B has two real nega-

tive eigenvalues.

We denote by y1( - q , 6 ) ,  y 2 ( , ó )  the eigenvectors of B .

The eigenvectors y 1,y 2 are introduced as new coordinates so

that (A .l 0 )  becomes

A-S

—a—-—. — - -w — . - ‘-.-e -
~~~-- - a - - - -s
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c-iy1 = o (y, -ri,ô)

~A. 1 Oa)

= 0 ( y , i i , 6 )

The system A . l O a  is of the cri tical type if

a) at r~ = 6 = U , B has one zero eigenvalue

b) the second derivat ives

~~~ ~~~ ô
2
8 -vanish

‘ ‘ (A.i1)

when i~~= 6 = 0

c) 2~
= a~ 0

uy
l

The assumption on A .lob can actually be weakened slightly: we only

need to require that vanish , the other second derivatives

need not vanish. However , assumption A .iOb does not cause any loss

of generality and simplifies the analysis considerably.

In terms of the y coordinates , for small -q,6 the system

(A.l0) takes the form

= r( ,o)y
2 
+ 0 ( y 2, ( f l  + 6 ) y )

+ + + C461 (A.12)

+ y~~(a5 + c6 6) + y 1y 2 (~~7 -q + c8~~)

A-6
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2.... 3 c - 2+ Y 2~~9 n + C1~~6) + ay1 +

(A. i.~)+ ~ y 1y~ + ~~~ + 0(y
4,(-q 2 + 62)y1 cont’d

• 3( + ó ) y

Letting y ’ = — y, S = S/a and = c2~ li
~1 

+ c2.6 we have

= X 0y 2 + 0 (y 2 , (  + ö ) y )

= V1 
+ 

~~~~~~~~ 

~~~~~~ ~~~~~~ (A.13)

+ 
~‘5~’2 + y 1 + by1y2

2 3+ cy1y2 + dy 2

+ 0(y4,(yi2 +

( + 6 ) y 3)

We now introduce new variables by

z 2 = 

~
‘2 + 0 ( y 2 , ( r ~ + 6)y)

= y 1 + 
~l~

’i + t 1iiy1y 2 +

‘ + s2óy~ + t 2 6y 1y 2 + u26y~ (A.l4)

+ wly~ + w 2Y~ y 2 + w3y1y~

+ w4y~ + 0 (y 4 , ( - q2 + 6 2 )y , i iy 3 )

Without loss of generality,  we have not included terms 0(y2) in

~~ 
the definition of Z1. This follows from assumption A .lob.

A-i
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From A.l4, we have

Z
2 

= + 0(yy ,(i~ + ô ) y

Zj = y~ + 2S 1ny1y~ + t ,r uy .. y ( A . 1 5 )

+ t ,nyjy2 + 2u ,riy2y2 + 25 2yky
~~o

+ t 2 6 ( y 1y~ + y~y2) + 2u 2 6y 2 y

+ 3w1y~ y~ + w2 (y~ y1y 2 + y~ y ;)

+ w3 (~~~y~ ÷ 2y 1y 2y~ )

+ 3w4 y 2y~

+ 0(y y ’, y ’,o y ’)

Using (A.l3) in (A.l5) yields (with X = X 0
)

Z~ = X0Z2 + 0(Z
2,r~Z)

z i = Vl + y l y 2

+ y~~(y 3 + 3w1y 1)

(A. 16)

+ y1y 2 (y 4 + t
1

,-~ + t2oX + w2 X 1 + 2Xw3)

+ y~~(y 5 + 2u 1r~X + 2u 2 6X + w 3X 1
)

+ y~~(b + w2 X + w 2 X + w2 y 2 )

A-8

I 
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2+ y1y2(c + 2w 3 X + w3 y2
)

+ y~~(d + 3w4X)

+ 0(y4,( 2 
+ 6

2) y ,y 3
( + 6)

We choose

S 
W

4 
= 

2X+ y2 
w2 

= ____

— Y 5—w 3ylu1 + u 26 2X

— y 4
— W

2 
y 1— 

2~ w~
t

1
i i + t

2
6 =  

X

Y3wi =
~~ -~~~~~

.

Noting that y
~ 

= + 0(~~
3, 2y2) and

that y1y~ Z1y~ + 0 ( 2
Z
2
) , egn (A.l6 )

becomes

= X0Z2 + 0 ( Z 2 , Z )

= + ‘~‘2zl 
+ Z~ + 0 ( Z 4 , ( 2 + 62 ) ,

( +

which is the desired normal form.
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